Jackknife Hervé Abdi ⋅

نویسندگان

  • Hervé Abdi
  • Lynne J. Williams
چکیده

The jackknife or “leave one out” procedure is a cross-validation technique first developed by Quenouille to estimate the bias of an estimator. John Tukey then expanded the use of the jackknife to include variance estimation and tailored the name of jackknife because like a jackknife—a pocket knife akin to a Swiss army knife and typically used by boy scouts—this technique can be used as a “quick and dirty” replacement tool for a lot of more sophisticated and specific tools. Curiously, despite its remarkable influence on the statistical community, the seminal work of Tukey is available only from an abstract (which does not even mention the name of jackknife) and from an almost impossible to find unpublished note (although some of this note found its way into Tukey’s complete work).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial least squares regression and projection on latent structure regression (PLS Regression)

Partial least squares (pls) regression (a.k.a projection on latent structures) is a recent technique that combines features from and generalizes principal component analysis (pca) and multiple linear regression. Its goal is to predict a set of dependent variables from a set of independent variables or predictors. This prediction is achieved by extracting from the predictors a set of orthogonal ...

متن کامل

Principal component analysis

Principal component analysis (PCA) is a multivariate technique that analyzes a data table in which observations are described by several inter-correlated quantitative dependent variables. Its goal is to extract the important information from the table, to represent it as a set of new orthogonal variables called principal components, and to display the pattern of similarity of the observations a...

متن کامل

C Canonical Correlation Analysis

Hervé Abdi, Vincent Guillemot, Aida Eslami and Derek Beaton School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA Bioinformatics and Biostatistics Hub, Institut Pasteur (IP), C3BI, USR 3756 CNRS, Paris, France Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada Rotman Research Institute, Baycrest Health Sciences, Toro...

متن کامل

Multiple Subject Barycentric Discriminant Analysis (MUSUBADA): How to Assign Scans to Categories without Using Spatial Normalization

We present a new discriminant analysis (DA) method called Multiple Subject Barycentric Discriminant Analysis (MUSUBADA) suited for analyzing fMRI data because it handles datasets with multiple participants that each provides different number of variables (i.e., voxels) that are themselves grouped into regions of interest (ROIs). Like DA, MUSUBADA (1) assigns observations to predefined categorie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009